Experimental Investigation of a Methodology for Flutter Speed Estimation from Acceleration Measurements

MSc Research Study by Tzlil Nahom Under the Guidance of Prof. Daniella Raveh
Technion - Israel Institute of Technology Department of Aerospace Engineering

Background

- Aeroelastic flutter is a destructive instability phenomenon
- Typical flutter clearance process for flutter flight test :

$$
\text { Analysis } \rightarrow \text { Flight tests } \rightarrow \text { Final clearance }
$$

Most flutter testing methods rely on external mechanical excitation accessories

- The Autoregressive Moving Average (ARMA) flutter prediction method identifies the aeroelastic system based on the aircraft structural response to random air turbulence excitation.
- The proposed study is focused on the validation of the ARMA method based on acceleration measurements obtained by aeroelastic wind tunnel tests

The ARMA model

- Discrete-Time method for linear system modelling
- Originally suggested by Matsuzaki and Ando*
- Offers a favorable stability parameter that varies as a linear function of the dynamic pressure
$\xrightarrow[\text { excitation }]{\text { turbulence }}$ Flow conditions $\xrightarrow{\text { AC }}$ accelerations
- $\underbrace{y_{i}+\phi_{1} y_{i-1}+\phi_{2} y_{i-2}+\ldots \phi_{p} y_{i-p}}_{A R(p)}=\underbrace{\epsilon_{i}+\theta_{1} \epsilon_{i-1}+\theta_{2} \epsilon_{i-2}+\ldots \theta_{q} \epsilon_{i-q}}_{M A(q)}$

ARMA model validation- Israel Air Force

- Evaluation of the ARMA method based on F16 platform flight tests results

Modal Frequency

Stability Parameter

Test case

An elastic wind-tunnel wing model designed, analyze and manufactured using rapid prototyping

wing characteristics	
Span length	$0.6[\mathrm{~m}]$
Chord length	$0.1[\mathrm{~m}]$
Airfoil	NACA0018

$\omega-\mathrm{V}$ - g charts from linear flutter analysis - ZAERO

ARMA estimation results

- Based on acceleration responses to random excitation computed by linear aeroelastic simulation (ZAERO)

Modal Frequency

Future work

- Wind tunnel testing
- Study of the method's accuracy and limitations

